
1

Objectives

• Understand what the Crosser Streaming Analytics solution can do

• Basic understanding of stream-based processing

• Familiarize yourself with the Crosser module library

• Hands-on experience of implementing and deploying basic use cases

• How to setup Crosser Nodes for local processing

At the end of the course you should be ready to setup your own edge analytics use cases

Learning by Doing!

2

Course Setup

• You can use any account to follow this course, including free-trials

• Six sessions with presentations and exercises
• Video recordings available

• Presentations as PDFs available for online viewing or download

• Expected total time to complete the course: 15-20 hours

• Documentation is available in our Help Center (docs.crosser.io):
• Crosser Control Center documentation

• Crosser Academy
• Presentations

• Videos

• If you have questions, use our support portal (support.crosser.io)

• The exercises are the key to success
• Work through the exercises in order, they are there for a reason!

• After completing the exercises and the exam you get a diploma

3

https://docs.crosser.io/
https://support.crosser.io/

Sessions

• First session - Introduction to Crosser Streaming Analytics solution

• Second Session - Create your first flow

• Third Session - Streaming data

• Fourth Session - Working with arrays

• Fifth Session - Non-streaming data and local node installation

• Sixth Session - Working with files
- User management introduction
- Examination

4

5

Session 1
Agenda

• Crosser Solution Concepts

• Flow-based processing

• Understanding Messages

No exercises in this session

6

CROSSER SOLUTION CONCEPTS

Flows

Messages

Modules

Crosser Node

Control Center

Credentials

Resources
7

Analytics
module

Analytics
module

• Crosser uses Flows to implement
processing

• A Flow consists of Modules that process
Messages

• A Message can contain e.g:

• Sensor values

• The result of a database query

• The response from an API call

• Binary data, such as image, video and audio

Flows
Processing Messages with Modules

Trigger
(Input)
module

Analytics
module

Output
module

Analytics
module

Analytics
module

• A Module process messages:

• Trigger modules - starts processing, e.g. at
regular intervals or when data arrives

• Input modules - get data from external
sources, e.g. PLCs, APIs, MQTT, databases,
files

• Analytics modules - do something with the
message data they receive and produce
modified output messages

• Output modules - send processed messages
to external destinations, e.g. PLCs,
databases, files, enterprise, cloud services

• The Crosser module library has ~200
modules, can be extended by customers or
partners

Modules
Processing Messages

Trigger
(Input)
module

Analytics
module

Output
module

Custom Functionality
Extend the Crosser module library

Code modules
Drop in your own C#, Python or JavaScript code
Standard Python with support for third-party
libraries, including ML

Universal Connectors
Wizard-based tool to create custom
connector modules for REST APIs

Crosser SDK
.NET SDK for building fully custom
modules

{JS}

Flow

Flow Engine

Flow

Crosser Node
Flows run on Nodes

• Nodes can be installed anywhere: edge, on-
prem, cloud

• A Flow is a configuration that can be
changed any time

• A Node can run multiple Flows

• The same Flow can be deployed on any
number of Nodes

• Flows can be updated or added without
affecting other Flows on the same Node

• Functionality provided through modules and
Modules are downloaded together with
Flows

• Local web/API for monitoring and queue
management

• Events published on the internal MQTT
broker

Node Host

Flow Engine

Flow

Flow Runtime

Docker container or Windows service

Flow configurations and modules
downloaded from Cloud

Local Node features

M
Q

T
T

 B
ro

k
e

r
H

T
T

P
 S

e
rv

e
r

A
P

I

Node Deployment Options

Platform Docker Kubernetes/OpenShift Azure IoT Edge/

AWS Greengrass/SiteWise Edge

Management Local (Remote) Remote Remote

Tools docker-compose

(Podman, Portainer…)

kubectl Azure/AWS portal, CLI, API

High-availability (multi-server) No Yes No

Server or VM

Docker

Server or VMServer or VMServer or VM

Kubernetes

Server or VM

IoT Edge
Greengrass/SiteWise

Edge

Hub

Node Deployment Options

Platform Docker Kubernetes/OpenShift Azure IoT Edge/

AWS Greengrass/SiteWise Edge

Management Local (Remote) Remote Remote

Tools docker-compose

(Podman, Portainer…)

kubectl Azure/AWS portal, CLI, API

High-availability (multi-server) No Yes No

Server or VM

Docker

Server or VMServer or VMServer or VM

Kubernetes

Server or VM

IoT Edge
Greengrass/SiteWise

Edge

Hub

Windows servers

The Node can also be

installed as a Windows

service.

Requires manual

installation of Python

Crosser Control Center
Centralized Management

• Hosted by Crosser (Azure) or by
Customers or Partners (white-label)

• Flow Design
• Flow Studio Visual design tool

• Flow Management
• Flow versioning
• Flow deployment

• Node Management
• Registration

• Monitoring
• Flows and Nodes

• User Management
• Access control
• Internal or external authentication

(OpenID connect)

Credentials

• The Credentials library is used to store credentials
that will be used for access to external services

• Credentials could for example be:

• Username/password

• API keys

• Connection strings

• Credentials are used in modules settings

• All credentials are stored encrypted both in the
Crosser Control Center and the Node and the data is
never exposed to users

15

Add credentials on the
Credentials page or from

module settings

Resources

• Resources are additional data needed by your
flows, for example:

• PLC tag lists

• Python or C# code

• Any file, e.g. ML models, CSV files…

• Resources are downloaded into local storage
when the flow is deployed and can be
accessed from within a module when running
on the edge node.

• Added on the Resources panel in the Flow
Studio or on the Resources page, by uploading
a file or by entering information straight into
the UI.

16

17

From Idea to Reality
Low Code Design | Central Orchestration | Local Execution

Start from scratch or use a

template or an existing flow.

Combine pre-built modules into

processing flows with

drag&drop editor.

Add custom algorithms and/or

Machine Learning.

Connect to real data

sources and test your data

flow.

Select one or many nodes

and deploy your data flow.

Select
Nodes

Deploy

& Run

FLOW BASED PROCESSING

Basic structure of Flows

How to implement logic with Flows

18

Flow processing
Start with a Trigger

Triggers

New
data

Every
minute

At 3pm

Flow processing
Get Data (pull)

Triggers

New
data

Every
minute

At 3pm
Get Data

Input

Flow processing
Do something with the Data

Triggers

New
data

Every
minute

At 3pm

Process Messages

Transform Calculate ?

Get Data

Input

Flow processing
Do something with the Data

Triggers

New
data

Every
minute

At 3pm

Process Messages

Transform Calculate ?

Advanced processing

C#, Python or JS

code

Custom code and ML

Get Data

Input

Flow processing
Deliver the Result

Triggers

New
data

Every
minute

At 3pm

Process Messages

Transform Calculate ?

Advanced processing

C#, Python or JS

code

Custom code and ML

Get Data

Input

Deliver Result

Output

Flow processing
Using multiple Input sources

Enrich data

Query

SQL

Enriched
messages

Harmonize data

Input 1

Input 2

Input 3

Transform

Transform

Transform

Common
format

Harmonize data from
different sources to

simplify downstream
processing

Use data from one
source to request

additional data from
another source

Flow processing
Conditional Processing

Create separate paths
based on conditions

(Split module)

Only process messages
that meet some condition

(Message Filters)

Multiple Paths

IF X?

Do A

Do B

Yes

No

Block Messages

Do X Do Y[X Ok?]

Flow processing
Events and Streams

Each message is
processed independently

A sequence of messages
is used by the module

Event processing

Reformat

Change values

One message at a time

Stream processing

Aggregate

Combine

Multiple messages into one

Stream processing

Iterate

One message into multiple

An array is broken up into
individual messages

UNDERSTANDING MESSAGES

Message structure (Properties and Values)

Accessing data in Modules

Building up Messages

27

Message Structure

• Messages are objects with properties and values

• The value of a property can be another object, thereby
creating hierarchies

• The value of a property can be an array, where each
element is either a simple value or an object

• Hierarchies are traversed using “.” notation, e.g.
data.temp

• Values have a type, eg int, float, string, object…

• Messages use a custom .NET type: FlowMessage*

*) When presented in the FlowStudio it may look like
JSON, but it’s NOT

28

{

"id": 1,

"name": "machine",

"data": {

"temp": 12.5,

"pressure": 489

}

}

Property Value

Messages in Modules

• Modules act on messages, they will only do
something when a message is received

• A Module uses selected parts of incoming
messages, based on settings, and can create
modified or new messages on the output

• A module can:

• Produce an output message for each input message, e.g.
Property Mapper

• Create one message per multiple input messages, e.g.
Aggregate

• Create multiple output messages for each input message,
e.g. Array Split

• Modules can only use data with the correct type

29

Module

X

Msg Msg Msg Msg

Accessing Message Data in Modules

• Property settings reference message data

• Other settings control the operation of the module

30

{

"name": "machine-3",

"data": {

"temp": 12.5,

"pressure": 489

}

}

{

"name": "machine-3",

"aggregate": {

"average": 62,

"name": "machine-3",

"min": 13,

"max": 87,

"count": 3,

"timestamp": "2020-02-21…."

}

}

Input message Output messageModule settings

Source and Target properties
Overwrite or Add data

31

{

"data": 12.5

}

Source: data

Target: data

Source: data

Target: newData

{

"data": 25

}

{

"data": 12.5,

“newData”: 25

}

Modules can add new or overwrite existing properties (Target)
Properties remain in messages until explicitly removed (Property Mapper)

Building up Messages

32

{

"sensor1": 10.5

}

Get weather data Analyze sensor value

Most modules can only reference data in a single message!
Keep data together in a single message by adding properties through

each module

Trigger alarm

{

"sensor1": 10.5,

"temperature": 25,

"pressure": 1013

}

{

"sensor1": 10.5,

"temperature": 25,

"pressure": 1013

"alarm": true

}

[‘alarm’
true?]

SESSION – 01 END

33

34

Work with modules and flows

	Slide 1
	Slide 2: Objectives
	Slide 3: Course Setup
	Slide 4: Sessions
	Slide 5
	Slide 6: Session 1 Agenda
	Slide 7: CROSSER SOLUTION CONCEPTS
	Slide 8
	Slide 9
	Slide 10: Custom Functionality Extend the Crosser module library
	Slide 11: Crosser Node Flows run on Nodes
	Slide 12
	Slide 13
	Slide 14: Crosser Control Center Centralized Management
	Slide 15: Credentials
	Slide 16: Resources
	Slide 17
	Slide 18: FLOW BASED PROCESSING
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: UNDERSTANDING MESSAGES
	Slide 28: Message Structure
	Slide 29: Messages in Modules
	Slide 30: Accessing Message Data in Modules
	Slide 31: Source and Target properties Overwrite or Add data
	Slide 32: Building up Messages
	Slide 33: SESSION – 01 END
	Slide 34

